
EQUILIBRIUM OF A LOOSE MEDIUM BETWEEN VERTICAL WALLS 

Yu. A. Buevich UDC 539.215 

The plane and axisymmetric problems of the stress distribution in a loose medium 
bounded by vertical walls are studied on the basis of a model according to which 
the limiting condition for the friction force holds only at the walls and the 
medium in the interior is not in a limiting state. There is an analysis of the 
static equilibrium of a loose medium in a container and of the dynamic equilibrium 
of a densely packed bed moving under the influence of gravity or a piston. 

The stress distribution which arises when loose materials are poured into bins and 
other containers or during the motion of granular beds is of considerable practical interest 
in many technological fields. For example, study of this distribution is required in calcu- 
lations of the strength of bins and in working out appropriate standards; detailed in- 
formation about the compressional stresses acting on the individual particles is required 
for designing catalytic chemical reactors using stationary granular bed, because of the 
limited strength of the catalyst grains; etc. Furthermore, study of the static and dynamic 
equilibrium of a granular bed in various types of apparatus is extremely important for 
analyzing the transition of the bed into a fluidized state and for carrying out calculations 
for the transport of loose media under dense-bed conditions. 

Ordinarily, the equilibrium of loose media in bins, etc., is studied under the assump- 
tion that the system is in its limiting equilibrium state, as a particular case of ~he more 
general problem of the pressure exerted by a medium on bulkheads [I, 2]. The adoption of 
this assumption makes it possible to use the limiting relation between the normal and tan- 
gential stresses (as a rule, the Coulomb law) at the slipping surfaces to close the system 
of equilibrium equations, to find the characteristics of this system, and to then determine 
the stress field in the various regions into which the entire volume filled by loose medium 
is divided. 

The numerica~ results obtained in this manner are difficult to interpret and are ex- 
tremely inconvenient for practical purposes; accordingly, particular approximate models have 
been formulated from which comparatively simple analytic results can be obtained. However, 
models of this type are usually of limited value. For example, the model which has been 
worked out most thoroughly [3, 4] is based on both the assumption that the limiting state 
is reached at all points in the loose medium in the container and the assumption that the 
horizontal normal stresses are independent of the horizontal coordinate. The stress fields 
obtained on the basis of these assumptions in [3, 4] do not satisfy the equilibrium equa- 
tions (in fact, these assumptions are mutually consistent only in the trivial case in which 
there is no horizontal motion at all). 

Furthermore, the very hypothesis that a limiting equilibrium is established is extreme- 
ly dubious for the case of a loose medi~nn in a container. It follows from an analysis of 
the plane and axisymmetric problems in [5, 6], carried out in connection with the question 
of the beginning of fluidization of a granular bed, that the following equation holds in 
the limiting state: 
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(for simplicity we assume ideally loose media alone; the generalization to the case of a 
medium with adhesion is quite straightforward, as will be shown below). Obviously, we have 
T = 0: at the axis or at the symmetry plane, so that one of the normal stresses must also 
vanish at this plane lower axis. This conclusion contradicts experimental data, at least 
for deep granular beds. Actually, the state of the loose medium can differ significantly 
from the limiting state. Examples of these "nonlimiting" states are the simple stress state 
corresponding to the solution Of the familiar Hertz problem of the elastic deformation of a 
volume of spherical particles and the more common states with irreversible plastic deforma- 
tion treated by Cherepanov [7]. 

From the physical standpoint, the appearance of regions in the nonlimiting state is 
quite natural. If the angle ~w of the boundary friction at the walls is smaller than the 
internal-friction angle ~i, the settling of the medium (e.g., under the influence of its 
weight) leads to a situation such that the limiting relation 

Ixn] = ~ntg6 (2) 

i s  r e a c h e d  a t  t h e  w a l l s  i n  t h e  c a s e  ~ : ~w e a r l i e r  t h a n  t h e  a n a l o g o u s  r e l a t i o n  i s  r e a c h e d  i n  
t h e  vo lume ,  i . e . ,  w i t h  d : d• S i n c e  t h e  t a n g e n t i a l  s t r e s s  i s  c o n t i n u o u s  n e a r  t h e  w a l l s ,  
t h i s  s t r e s s  a g r e e s  w i t h  (2) and a t  any  r a t e  i s  l o w e r  t h a n  i t s  l i m i t i n g  v a l u e  which  f o l l o w s  
from t h e  Coulomb law.  I f ,  on t h e  o t h e r  hand ,  we have  dw > d i ,  t h e n  Eq. (2) r e m a i n s  v a l i d  a t  
t h e  w a l l s ,  b u t  we have  ~ = ~ i .  I n  many c a s e s  ( i n  p a r t i c u l a r ,  t h o s e  d i s c u s s e d  below) i t  i s  
p r e c i s e l y  a t  t h e w a l l s  where  t h e  t a n g e n t i a l  s t r e s s  r e a c h e s  i t s  maximum. C l e a r l y ,  t h e  s t a t e  
o f  t h e  medium i n  t h e  i n t e r i o r  i s  n o t  t h e  l i m i t i n g  s t a t e  i n  such  c a s e s ,  even  i f  dw > ~i-  
P h y s i c a l l y ,  t h e s e  a r g u m e n t s  mean t h a t  t h e  w a l l - f r i c t i o n  f o r c e  i n  (2) and t h e  r e s u l t i n g  
normal  s t r e s s e s  a r e  c o m p l e t e l y  c a p a b l e  o f  b a l a n c i n g  t h e  g r a v i t a t i o n a l  f o r c e  and p r e v e n t i n g  
p l a s t i c  f l o w ,  which  c o u l d  l e a d  t o  a f u r t h e r  e v o l u t i o n  o f  t h e  s t r e s s  s t a t e  a l l  t h e  way to  
the limiting state. 

In a study of nonlimiting states the internal-friction angle should be replaced by some 
other parameter to describe the loose material. Following [7], we consider the homogeneous 
compression of a loose medium along one of the axes (e.g., the z axis) under the condition 
that the medium is bounded by solid walls parallel tO this axis. Clearly, the stress ~z 
is homogeneous and equal to the applied (external) pressure. We assume that the resulting 
transverse normal stresses are approximately proportional to Oz, and we adopt the coefficient 
of this proportionality, ~, as the basic characteristic of the loose material. If there is 
elastic deformation alone- the value of oz is governed by the shape of the particles, the 
nature of their packing, and the Poisson ration. More generally, this quantity isals0 gov- 
erned by the plastic deformations which occur during the establishment of the equilibrium 
and by the resulting irreversible elastic deformations (it is the latter which cause the 
thrust forces on the walls which do not vanish when the gravitational force on the medium 
is neutralized, the formation of arches during free crumbling, etc.). Accordingly, • depends 
on the history of the conversion of the medium to its equilibrium state--the method used to 
pack it, various dynamic effects, etc. If the irreversible plastic deformation is pronounced, 
z cannot 5e much larger than one [7]. 

We consider a nonlimiting equilibrium of the type discussed above between plane vertical 
walls or within a vertical cylinder, assuming for simplicity that the problem is symmetric 
with respect to the plane or axis x' = 0. The coordinate system and geometric parameters of 
the problem used below are explained in Fig. i. In the plane problem, x' is a horizontal 
Cartesian coordinate; in the axisymmetricproblem it is the radial coordinate. We introduce 
the dimensionless quantities 

x = x' /R,  z = z' /R,  h = H/R.  (3) 

In terms of the coordinates in (3), the equilibrium equations are 

_ _  O~z aa~ a.r = O, dr, lex 4 - - -  = ? R = F ,  
ax + -dz ax x az (4) 
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Fig. I. Formulation of the problem, a) Equilibrium of 
the loose medium in the container; b) dynamic equili- 
Brium during motion of the piston (the shape of the 
free surface corresponds to upward motion); c) free 
fall of the dense bed between the wall. 

where the plane problem corresponds to k = 0 and the axisymmetric problem corresponds to 
k = i. We write the boundary conditions at the walls and the plane or the symmetry axis and 
the symmetry conditions as 

x=__+(z% ( x = l ) ,  a==•  (x=O), ~ = t g m i n { 6  w, 6i}, 

%~ (x, z) = (r~ ( - x ,  z), c= (x, z) = (r= ( - x ,  z), "~(x, z) = - -  ~ ( - - x ,  z). 
(5) 

In Eqs. (4) we have used the sign convention customary in the statics of loose media 
[i], according to which compressional stresses are positive. We also note that the first 
equation in (4) is written under the usual assumption that the radial and azimuthal normal 
stresses are approximately equal (see, e.g., [6]). The exact equality of these quantities at 
the x = 0 axis or plane follows from the symmetry of the problem. 

The upper and lower signs in (5) correspond to the "minimum" and "maximum" stress states. 
The first of these states is established when the wall-friction forces prevent settling of 
the loose medium and are directed upward, i.e., when the medium is exerting a force on the 
wall and the base of the container or during the fall of a dense bed. The second state is 
established during motion of a granular bed upward under the influence of a force on the 
base of the container, treated as a piston. In this case the frictional forces opposing the 
motion are directed downward. 

The conditions to be imposed on the upper and lower surfaces of the bed depend on the 
nature of the equilibrium under study, and it is more convenient to examine these conditions 
separately for the concrete problems discussed below. 

We seek a solution of Eqs. (4) in the form of the series 

%=Ao(z)+~ An(z)x2", a, = B,,(z)xW'-~), ,~= C,~(z)x 2"-~, 
(6) 

which satisfy the symmetryconditions in (5). From (4) and (5) we find the following problem 
for the coefficients Ao, Ai, Bi, Ci: 

dB1 _ I ~, 2Ai-~ dCldz --0, ( l~-k)  C l~. dz 

Ci = --  a (Ao + A1), Ao = • 

(7) 
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Depending on the sign of the parameter 

T =  1 - - 2 ( I  - 6 k ) ~  ~ (8)  

the eigenvalues of problem (7) can be either real or complex. If T > 0, the eigenvalues are 
real, 

~l,~----~z-x~l,~ , ~i - - = t = l q - v ,  ~ = = t = l - v ,  v = I T I  uz (9)  

and the solution of (7) is determined within two constants, ~ and b: 

Ao = 5:: r + +-14- v aeX.~ q_ +_ 1 - -  v be~2, , 
(1 + k) ~z 2o: 2~z 

Ax -- 1 (LxaeX~Z + ~,~be~), C~ -- r + o. ~ + be ~ ,  (i0) 
2 t + k  

Bl = • r + 4- t -t- v ae zx~-t- • 1 - - v  be~Z. 
(1 - -k) •  2• 2• 

If T < 0, the eigenvalues are complex, 

~'i = ~ L -+- ira, ~2 = -T- ~. - -  ion, L = ~-1, ~ o) = cc-lv 

and the solution is 

Ao--- --I- r . + e T : ~ z l - t - a + v b  coso)z + - - v a i b  s ino )z ] ,  
(1 q- k) o~ 2~ 2~ 

1 
Z l  ------ - - "  

2~ 
e "~z [( • a--vb) cos o~z + (.ca 4-_ b) sin ~z], 

r ~ceTXz [ + a + v b  
B I =  _---r- ( l + k ) x ~  2• coso~z + 

_+_ - -  ~a  -+- ---b b sin o)z] 
2~e~ J 

r 
c1 = - -  + e~X~ (a coscoz-t- bsin o)z). 

1 - t - k  

Analogously, for the coefficients in series (6) with n > i we have 

(Ii) 

(12) 

dB~ =0, C~= +o~A~. 2nAn q_ dCnd____z_ = O, (2n- -  1 q- k) Cr~ -}- --dz - (13)  

The solution of this problem, whose eigenvalues are always real, is 

An = ! ka,~ e~2nxz, B n = b n ::f= 2 n - -  1 + k a~e~nXz" C~ = a.e *2n~z. 
2nk (14) 

Accordingly, the functions A n, B n, and C n which appear in (6) are also determined with- 
in two arbitrary constants, a n and b n, regardless of the value of n > i. 

We emphasize that the upper and lower signs in all these equations correspond to the 
minimum and maximum stress states, for which the frictional forces exerted on the medium by 
the walls are directed upward and downward, respectively. 
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The constants a and b in (i0) or (12) and a n and b n in (14) must be found from the 
conditions imposed at the lower and upper boundaries of the bed. We will consider the deter- 
mination of these constants separately for the various physical problems. 

i. Equilibrium of a Loose Material in a Container. In this case (Fig. la) we are dealing 
with a minimum stress state; i.e., we are tO use the upper signs in the equations above. As- 
suming that the upperboundary of the granular bed is horizontal, and assuming that it 
experiences a distributed normal pressure P(x) and a distributed friction force per unit area, 
S(x), with 

p (x) = 2 p.x~(~-~), S (x)= 2 &x2'~-~, 
a = l  n = l  

we find, using the boundary conditions at the upper boundary, 

(15) 

(r~ = p (x),  �9 = s (x) ( z =  o) 

the following results for positive T: 

x a  1 - - v  I + v  r 
a = - -  P1 - -  $ 1 - -  - -  , 

v 2v 2v 1 - -  k 

•  I -+-v 1 - - v  F 
b -  P i §  $ I §  

v 2v 2v 1 ,-+- k 

(17) 

For negative T we have 

( r.) P b = __I 2• - -  S i  . 
a = S 1  l + k  ' v l + k  (18) 

In both cases the coefficients a n and b n from (14) are given by 

a .  = S,~, b,~ = P , ~ - -  
2 n - - 1  + k  

2nL 
S=. (19) 

Equations (17)-(19) along with (I0), (12) and (14), completely determine the solution of our 
problem, and this solution can easily be written explicitly. 

Analysis of this solution shows that with increasing depth below the upper surface the 
stresses asymptotically approach limiting values independent of z and T: 

F F Fx t 
- ,  , " ~ - -  [ z > > - -  . ( 2 0 )  % ~  (1 + k)os % ~  (1 + k ) : ~  l + k  1 - - v  

These values are also independent of the load applied at the upper surface of the bed and 
describe stresses which can arise only in a quite thick bed. It is also easy to derive ap- 
proximate equations describing the stresses near the upper boundary. For example, for a bed 
with a free upper surface we find 

1 - - T  F 1 - - T  F 
% ~ - -  - -  ( 1 - - x Z ) z ,  % ~ z, 

2 a  ~ 1 § k 2 •  2 1 ;-}- k 

1--T r ( = ) 
T ~ - -  XZ  ~ Z ~ 

2a 2 1 q-  te I I - -  v ] 

(21) 
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(here we are retaining only the leading terms in the expansions in powers of z). According- 
ly, both the vertical and horizontal stresses increase linearly in z with distance from the 
wall, while the pressure and frictional force at the walls are proportional to z 2 at small 
values of z; i.e., they increase much more slowly. 

If T > 0 (i.e., if the coefficient of friction ~ and the quantity x, the measure of 
irreversible deformations in the system, are small),the stresses approach the limits in (20) 
monotonically as z-~. On the other hand, if T < 0 (this case can arise if there is pro- 
nounced friction at the walls and large thrust forces due to irreversible deformations), all 
the stresses pass through alternating maxima and minima as functions of z (the corresponding 
"wavelength" is 2~-IR)~ The amplitude of these maxima and minima decreases exponentially 
with increasing z. In this case the limiting stresses in (20) are approached in an oscil- 
latory, nonmonotonic manner. The physical explanation is partial arch formation in the sys- 
tem. The various"arches"or "arcs" assume and directly transmit to the walls the forces 
exerted by the upper layers of the granular material; the bases of these arches approach 
the walls at regions where the pressure at the walls is minimal. The partial unloading of 
the material which occurs because Of these arches leads to a relative decrease in the 
stresses in the lower part of the bed, explaining the minima on the z dependences of the 
stresses. 

The nonlimiting state under discussion here can be reached in practice if there is no 
plastic flow at any point in the medium, i.e., if the minimum compressional stress Om 
exceeds--~c, where o c is the critical adhesion stress of the loose medium. This condition 
can be written as 

2crm ----- ~ "i- c~ - -  {(6x - -  6~) 2 + 4"r~] I12 > - -  2%.  
(22) 

It is not difficult to verify that the solution found satisfies condition (22), provided 
that S(x) and dP(x)/dx are not too large. Otherwise, the stresses distributed over the upper 
boundary lead to the establishment in the upper part of the bed of a zone with a true 
limiting-equilibrium state, which can be analyzed by the standard methods [i, 2]. Below this 
zone is one in which the general relations in (i0) or (!2) and (14) remain valid; the shape 
of the boundary between these zones can be determined from the condition Om =-~c- The 
continuity conditions on the normal and tangential stresses at this boundary, which is a 
discontinuity in the stressed state, can be used to find the arbitrary constants in (i0), 
(12), and (14) and thus to complete the solution of the problem in this case also. No new 
difficulties of a fundamental nature arise here. 

OBViously, the walls cease to influence the state of the granular bed in the limit 
+ 0. In this case we find from the equations above, with P(x) = 0, S(x) = 0, 

~-+xrz, ov-+rz, ~-+0 (23) 

in accordance with the familiar result for a free bed. 

2. Motion of a Loose Medium with a Piston. We turn now to the problem of the stresses 
in a loose medium supported by a piston, as shown in Fig. lb. A detailed analysis of this 
problem is extremely involved and could serve as the subject of a separate paper, so here 
we will simply offer a brief description of the fundamental aspects of the problem. We first 
consider the possible states of static equilibrium of a bed with a horizontal upper boundary, 
at which the loading conditions in (16) are specified. At the piston surface, z = h, we have 

! 

gz = q(x) (z---- h), ql---- q(O), Q= I q(x)(2~x)kdx' (24) 
0 

where q(x) is some function, and ql and Q are constants. 

As ~efore, the coefficients an and b n from (14) are written in form (19); we determine 
the constants a and b from the conditions 

=PI ~=0), g~=ql (z=h), (25) 
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which follow from (16) and (23). Here we are treating ql as some a priori unknown parameter. 
Then we can write all the stresses as functions of x and z, which also depend on the para- 
meter ql. The requirement CI = $I at z = 0, which also follows from (16), gives us an 
equation from which we can determine ql. It is easily shown that this equation has two roots, 
q7 and q~ , corresponding to the upper and lower signs in the equations above. The first- 
root corresponds to the minimum stress state and was in fact calculated in Section I. The 
quantity q~ is equal to the stress Oz at the point x = 0, z = h, found from the solution of 
the problem in Section i. The corresponding value of Q" from (24) is equal to the force which 
must ~e applied to the piston in order to prevent the bed from moving downward. 

The second root, q~ > q L  corresponds to the maximum stressed state; the critical 
value of the force applied to the piston, Q+, is again determined from (24). If the force 
Q exerted on the piston exceeds Q+~ the bed begins to move upward; analogously, if Q < Q-, 
it begins to fall. If Q" < Q < Q§ the bed cambe in an equilibrium state, but the problem of 
determining the stress field becomes statically indeterminate, for in this case there is no 
basis for assuming that the limiting condition for the frictional force is satisfied even at 
the walls. After the granular bed begins to move, the stresses in it become redistributed 
in such a manner that the vector sum of the gravitational force, the wall friction, and the 
force Q (which is now assumed given) vanishes. In this case a state of dynamic equilibrium 
is established. We now outline a method for solving the dynamic-equilibrium problem and 
analyze.its results qualitatively. 

There are two circumstances which fundamentally distinguish this problem from the static 
problem. First, the shape of the upper boundary of a moving granular bed can no longer be 
assumed given, e.g., horizontal, since this boundary changes during the establishment of 
uniform motion until it reaches an "equilibrium" shape z = zo(x). Second, the boundary 
friction angle turns out to depend on the velocity v: ~ = ~(v), where ~(V) is some unknown 
function. Both the boundary shape Zo(X) and the parameter v must be determined from a 
solution of the problem; they cannot be specified beforehand. 

We assume for simplicity that the upper boundary of the bed is stress-free and that 
there is essentially no friction between the loose medium and the piston surface (this is 
the model of a "smooth" piston). Then the boundary conditions at the upper and lower surfaces 
of the bed are 

gz=O (x=O, z=O), ~z=ql (z=O, z=h), T=O (z=h), (26) 

where ql is again treated as an unknown parameter. Using the first two conditions in (26) 
we can find a and b precisely as we did before; the third condition yields a n = 0. 

The conditions that the normal and tangential stresses at the free surface vanish are 
written in the standard manner: 

cr~nx + "mz = O, "rn~ § crzn z = 0 (z = z o (x)) ,  (27) 

where nx and n z are the components of the unit vector normal to this surface. The first 
condition in [27) leads to the nonlinear differential equation 

dz o .r l 
dx  G~ lz=z.(x) (28) 

for the function zo(x). Noting that T and ~x, which appear on the right side of (28), are 
independent of the constants bn, which have not yet been determined, we see that Eq. (28) can 
in principle always be integrated. It determines a two-parameter family of functions zo(x), 
which depe~nd on both ql and v. It is clear from physical considerations that the only curves 
in this family which can be used are those corresponding to the requirement 

!dzo/dxl~oo (x~l) (29) 
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(only under this condition does the wall-friction force approach zero as the free surface 
of the bed is approached). From condition (29) we find a relation Between the parameters: 

~=ql(~, (30) 

which must hold in a real situation, so that we are left with only a single unknown para- 
meter (for example, v). If zo(x) is known, the second condition in (27) permits us to find 
all the bn. 

Accordingly, the problem has been solved, in the sense that all the quantities of 
interest are expressed in terms of a single unknown parameter, v. To determine the latter we 
use the last condition in (24), inwhich Q is of course treated as a given quantity. This 
completes the solution of the problem. 

OBviously, the states of the minimum and maximum types are achieved in the cases 
Q < Q- and Q > Q+, respectively, so that we must use the upper or lower signs in all the 
equations, in accordance with the rule stated above. 

In this case the condition in (22) serves as a condition that no voids appear in the 
medium. Analysis shows that if Q > Q+ this condition holds, apparently for any parameters 
of the bed. If, on the other hand, we are dealing with a falling bed, then condition (22) 
holds only if Q- > Q > Q,, where Q, is some critical force, which depends on the function 
~(v) and other parameters. If Q < Q, there is a discontinuity in the falling bed: The piston 
with the adjacent portion of the loose material falls more rapidly than does the rest of 
the bed. In certain particular cases, with certain values of h, ~(v), etc., the condition 
Q, = 0 can hold. We note that in the limit Q+O we arrive at the limiting case of the "free" 
fall of a granular Bed ~Fig. ic). In this case both bed surfaces are free and nonplanar. 

During upward motion there is a swelling of the loose material in the upper part of the 
bed [the surface zo(x) is convex], while as the bed falls there is some settling (sagging) 
of the material (the free surface is concave). 

We note in conclusion that this approach to the study of the nonlimiting states of 
loose media makes it possible to study not only the processes discussed above but many other 
important problems which are of independent interest. As an example we cite the problem of 
the transition of a granular bed to the fluidized state, which can be analyzed without any 
serious difficulty on the basis of the methods developed in the present paper, both physical- 
ly and mathematically. This problem is taken up in a following paper. 

NOTATION 

Aj, Bj, Cj, a, b, aj, b~, constants; H, bed height; h, dimensionless height; k, a 
parameter, equal to one for ~he axisymmetric problem and equal to zero for the plane problem; 
P(X), PJ, normal load at the free surface and coefficients in its Taylor series; Q, force 
exerted on the pist0n; q[x), qj, normal stress at the piston and the coefficients in its 
series expansion; R, half-width or radius of the container; S(x), Sj, tangential stresses 
at the free surface and the coefficients in its Taylor series; T, parameter in (8); v, velo- 
city; x', z', horizontal and vertical coordinates; x, z, dimensionless coordinates; ~, 
tangent of friction angle; F, dimensionless quantity defined in (4); y, effective specific 
gravity of the medium; 5, boundary-friction angle; 4, coefficient in the proportionality 
of normal stresses during homogeneous compression of the medium; ~, parameter in (Ii); 
%j, eigenvalues; ~j, parameters in [9); v, parameter in (9); o x, Oz, normal stresses; ~c, 
critical adhesion stress; T, tangential stress; m, parameter in (11). 
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